Exponential Growth/Decay

$$y = ab^{x}$$

a =

b =

x =

Example: We buy a car for \$20,000. The annual rate of decrease is about 15%.

a. Find the decay factor for the car.

b. Suppose the rate of decrease continues to be 15%. Write a function to model the value of the car.

c. Find the value of the car after ten years.

The population of people admitting they attend science fiction conventions (like ComicCon) has grown exponentially by 40% since 2005. In 2005 there were 5,000 people who admitted attending the convention.

Write an equation to model this relationship.

How many people admitted attending in 2015?

A collection of 20 Star Wars figures were bought in 1978 for \$2.50 each. Seeing as these figures were kept in their original packaging, the value of the figures has increased by 4.5% per year since they were bought.

Write a formula to model the value of the collection.

What will the collection be worth in the year 1999?

Example: Tell whether each function represents exponential growth or exponential decay. Also, state the rate of growth or decay.

a.
$$y = 5(3)^x$$

b.
$$y = 5(\frac{1}{3})^x$$

c.
$$y = 6(\frac{5}{3})^x$$

d.
$$y = 3(\frac{3}{5})^x$$

e.
$$y = -3(1.02)^x$$

Example 4: Graph each.

a.
$$y = 3.2^x$$

The bacteria on your desk doubles every thirty minutes. Determine an equation to model this.

Then find the amount of bacterium on your counter after 8 hours, if you started with 1 bacteria.

Half Life Formula:

Potassium has a half-life of 5 years. If you start with a 250 mg. sample, how much will you have after 12 years?

Carbon has a half-life of 3 years. How much carbon did you start with, if after 9 years you have 30 mg. left?