Math 3 Honors Unit 4 Day 3 - Midsegments & Points of Concurrency

A ______ is a segment that connects the midpoints of two sides of a triangle; every triangle has three.

<u>Midsegment Theorem</u> – The segment connecting the midpoints of two sides of a triangle is ______ to the third side and is ______ as long as that side.

Examples: \overline{DE} is a midsegment of $\triangle ABC$. Find the value of *x*.

A **perpendicular bisector** is perpendicular to a segment at the ______. *A* perpendicular bisector can be a segment, ray, line, or plane.

Perpendicular Bisector Theorem: a point on the perpendicular bisector of a segment is always ______ to the endpoints of that segment.

<u>**Converse of the Perpendicular Bisector Theorem</u> –** In a plane, if a point is equidistant from the endpoints of a segment, then it is on the ______ of the segment.</u>

Examples:

Find x and CB.

Find x and AC.

Find x and AB.

______ – When three or more lines, rays, or segments intersect in the same point.

<u>**Point of Concurrency</u>** – The point of ______ of concurrent lines, rays or segments.</u>

The point of concurrency of three perpendicular bisectors of a triangle is called a

; it is ______ from the vertices of the triangle.

_____, ____, ____ are the vertices.

Point _____ is the

Acute Triangles

Right Triangles

Obtuse Triangles

Circumcenter inside triangle

Circumcenter on triangle

Circumcenter outside triangle

The point of concurrency of <u>three angle bisectors</u> of a triangle is called an ______; it is _______ from the sides of the triangle; it is *always* in the ______ of the triangle, regardless of triangle type.

** Because the incenter is ______ from the three sides of the triangle, a ______ can be **inscribed** within the triangle using the incenter as the center of the circle.

 Acute Triangles
 Right Triangles
 Obtuse Triangles

<u>Median of a Triangle</u> – A segment from a vertex to the ______ of the opposite side. The three medians are concurrent at Point _____.

Acute Triangles

Right Triangles

Obtuse Triangles

<u>Concurrency of Medians of a Triangle</u> – the medians of a triangle intersect at a point that is ______ of the distance from each vertex to the midpoint of the opposite side.

Points of Concurrency Examples:

Point *D* is the *incenter* of $\triangle ABC$. Find the following.

- 1. ED = _____
- 2. If DF = (2x 4), then x =_____
- 3. If $m \angle DAB = 48^\circ$, then $m \angle DAC =$ _____

4. If $m \angle ABC = 65^\circ$, then $m \angle ABD =$ _____

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle ABC$ meet at point *G*-the *circumcenter*. Find the indicated measure. Round to the tenths place when necessary.

Point G is the centroid of $\triangle ABC$, BG = 6, AF = 12, & AE = 15. Find the length of the segments.

- 1. \overline{FC}
- 2. \overline{BF}
- 3. \overline{AG}

4. \overline{GE}

Math 3 Honors Unit 4 Days 4 – Angle Bisectors & Altitude

An **angle bisector** is a ray that dives an angle into _____

Angle Bisector Theorem – If a point is on the bisector of an angle, then it is ______ from the two sides of the angle.

<u>Converse of the Angle Bisector Theorem</u> – If a point is in the interior of an angle and is ______ from the sides of the angle, then it lies on the ______ of the angle.

Examples:

- a perpendicular segment from a vertex to the

opposite side.

The point of the concurrency of <u>three altitudes</u> of a triangle is called the ______; it *always* makes a right angle with the

opposite side.

Acute Triangles

Right Triangles

Orthocenter inside triangle Orthocenter on right angle Orthocenter outside triangle

Obtuse Triangles

The orthocenter of a right triangle always falls on the ______ of a triangle.

Match the following with the correct terms from the Word Bank.

