A \qquad is a segment that connects the midpoints of two sides of a triangle; every triangle has three.

Midsegment Theorem - The segment connecting the midpoints of two sides of a triangle is
\qquad to the third side and is \qquad as long as that side.

Examples: $\quad \overline{D E}$ is a midsegment of $\triangle \mathrm{ABC}$. Find the value of x.
1)

2)

A perpendicular bisector is perpendicular to a segment at the \qquad A perpendicular bisector can be a segment, ray, line, or plane.

Perpendicular Bisector Theorem: a point on the perpendicular bisector of a segment is always \qquad to the endpoints of that segment.

Converse of the Perpendicular Bisector Theorem - In a plane, if a point is equidistant from the endpoints of a segment, then it is on the \qquad of the segment.

Find x and CB.

Find x and AC .

Find x and $A B$.

Point of Concurrency - The point of \qquad of concurrent lines, rays or segments.

The point of concurrency of three perpendicular bisectors of a triangle is called a
\qquad ; it is \qquad from the vertices of the triangle.

Acute Triangles

Circumcenter inside triangle

Right Triangles

Circumcenter
on triangle

-

The point of concurrency of three angle bisectors of a triangle is called an
\qquad ; it is \qquad from the sides of the triangle; it is always in the \qquad of the triangle, regardless of triangle type.

** Because the incenter is \qquad from the three sides of the triangle, a \qquad can be inscribed within the triangle using the incenter as the center of the circle.

Obtuse Triangles

Median of a Triangle - A segment from a vertex to the \qquad of the opposite side. The three medians are concurrent at Point \qquad .

The point of concurrency of three medians of a triangle is called a \qquad ;
Centroids are always \qquad the triangle, regardless of triangle type.

Obtuse Triangles

Concurrency of Medians of a Triangle - the medians of a triangle intersect at a point that is ___ of the distance from each vertex to the midpoint of the opposite side.

Points of Concurrency Examples:

Point D is the incenter of $\triangle A B C$. Find the following.

1. $\mathrm{ED}=$ \qquad
2. If $\mathrm{DF}=(2 x-4)$, then $x=$ \qquad
3. If $\mathrm{m} \angle \mathrm{DAB}=48^{\circ}$, then $\mathrm{m} \angle \mathrm{DAC}=$ \qquad

4. If $\mathrm{m} \angle \mathrm{ABC}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{ABD}=$ \qquad

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle A B C$ meet at point G-the circumcenter. Find the indicated measure. Round to the tenths place when necessary.

1. $\mathrm{GC}=$ \qquad 3. $B C=$ \qquad
2. $\mathrm{AD}=$ \qquad 4. $\mathrm{m} \angle \mathrm{BDG}=$ \qquad
3. If $B G=2 x$, then $x=$ \qquad

Point G is the centroid of $\triangle \mathrm{ABC}, B G=6, A F=12, \& A E=15$. Find the length of the segments.

1. $\overline{F C}$
2. $\overline{B F}$
3. $\overline{A G}$

4. $\overline{G E}$

An angle bisector is a ray that dives an angle into \qquad .

Angle Bisector Theorem - If a point is on the bisector of an angle, then it is \qquad from the two sides of the angle.

Converse of the Angle Bisector Theorem - If a point is in the interior of an angle and is
\qquad from the sides of the angle, then it lies on the \qquad of the angle.

Examples:

1) Find $m \angle A B D$

2) Find PS

3) $m \angle Y X W=60^{\circ}$

Find WZ

\qquad - a perpendicular segment from a vertex to the opposite side.

The point of the concurrency of three altitudes of a triangle is called the opposite side.

Acute Triangles

Right Triangles

Orthocenter
on right angle

Obtuse Triangles

Orthocenter
outside triangle

The orthocenter of a right triangle always falls on the \qquad of a triangle.

Match the following with the correct terms from the Word Bank.

Circumcenter	Perpendicular Bisector	Incenter	Centroid Angle Bisector	Orthocenter		
Altitude					\quad	Median
:---:						

a.

b.

C.

d.

a.

b.

C.

d.

