Warm Up

R:

1.
$$f(x) = x^3 + 3x^2 - 2x + 1$$

D:

Absolute Extrema:

Relative Extrema:

Increasing:

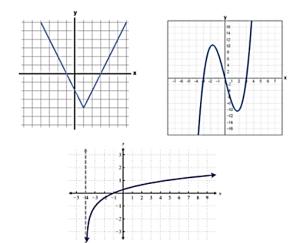
Decreasing:

Zeros:

Y-Intercept:

End Behavior:

2. Identify the function



Practice: Sketch the following on the same set of axes in different colors and state the transformation being applied to each function.

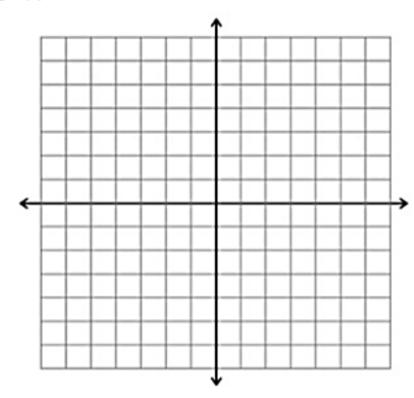
1)
$$f(x) = |x|$$

2)
$$f(x) = 1x + 61$$

3)
$$f(x) = |x-5|$$

4)
$$f(x) = -|x|$$

5)
$$f(x) = 1x + 11-3$$



Expansion and Compression Transformations

<u>Horizontal (x-values):</u> f(x)=f(bx)

If |b| is > 1, it is a horizontal compression by a factor of $\frac{1}{b}$

If |b| is < 1, it is a horizontal expansion by a factor of $\frac{1}{b}$

Example: $f(x)=\sqrt{x}$

 $g(x)=\sqrt{2x}$

 $h(x)=\sqrt{1/2}x$

<u>Vertical (y-values):</u> f(x)=a(f(x))

If |a| is > 1, it is a vertical expansion by a factor of a

If |a| is < 1, it is a vertical compression by a factor of a

Example: $f(x)=\sqrt{x}$

g(x)=2√x

h(x)=½√x

Note: put in standard form first!

-Get the coefficient of x to be a positive 1!

Given the parent function, $f(x) = x^2$, what transformations were applied in each? What changed from the original function f(x)?

1. a)
$$f(x) = (.25x)^2$$

2.
$$f(x) = (x-4)^2$$

b)
$$f(x) = (4x)^2$$

3.
$$f(x) = (-x-4)^2$$

4. a)
$$f(x) = 4x^2$$

b)
$$f(x) = \frac{1}{4}x^2$$

5.
$$f(x) = -x^2$$

6.
$$f(x) = x^2 - 4$$

General Rules of Transformations:

$$g(x) = \pm af(b(x-h)) + k$$
 (ORDER MATTERS!!!!!)
-b, h,-a, k

Step 1: (-b) If b is negative, reflect the function over the y-axis.

Step 2: (b) Look for a horizontal stretch/shrink.

- If |b| is > 1, it is a horizontal compression by a factor of $\frac{1}{b}$
- If |b| is < 1, it is a horizontal expansion by a factor of $\frac{1}{b}$

Step 3: (h) Look for a horizontal shift.

- For (x h), horizaontal shift to the right h.
- For (x + h), horizontal shift to the **left h**.

NOTE: For horizontal transformations it is the opposite of what you expect

Step 4: (-a) If a is negative, reflect the function over the x-axis.

Step 5: (a) Look for a vertical stretch/shrink.

- If |a| is > 1, it is a vertical expansion by a factor of a
- If |a| is < 1, it is a vertical compression by a factor of a

Step 6: (k) Look for a vertical shift.

- If k is > 0, we shift up.
- If k is < 0, we shift down.

a & k are vertical transformations, so they are both outside of the parentheses.

^{**}b & h are horizontal transformations, so they are grouped in the parentheses with the x.**

State the transformations in order! Remember -b,h,-a,k

ex}
$$h(x) = -|3x| - 5$$
 $f(x) = 4(-3x - 6)^3 - 1$

ex}
$$f(x) = -6\sqrt{x+4} + 8$$
 ex} $b(x) = 1/2(4x - 1)^2 + 7$

Now, let's write the function given the transformations:

1) $f(x)=x^2$, vertically stretched by a factor of 7, reflected in the y-axis, translated 5 units to the right and translated 3 units downwards

2) f(x) = |x|, horizontally shifted 7 units to the left, horizontally stretched by a factor of 1/2, reflected in the y-axis, vertically stretched by a factor of 9, and shifted down 5 units.