Logarithmic Functions as Inverses

- Definition of Logarithm: If $y=b^{x}$ then \qquad

$$
\text { Read as "log base b of } y \text { " }
$$

A logarithmic function is the inverse of an exponential function.

Example 1: Solve.
a. $\log _{3} x=2$
b. $\log _{4} x=3$
c. $\quad \log _{5} 25=x$
d. $\log _{4} 256=y$
e. $\log _{9} x=\frac{3}{2}$
f. $\quad \log _{7}\left(\frac{1}{49}\right)=y$
g. $\quad \log _{\left(\frac{1}{3}\right)} 27=y$
h. $\log _{6} \sqrt{6}=y$

So $\log _{10} x=$
Example 2: Evaluate.
a. $\log 100$
b. $\quad \log 6$
c. $\log _{6} 216$
d. $\quad \log _{7} 343$
e. $\quad \log _{2}\left(\frac{1}{128}\right)$
f. $\quad \log _{9} 27$
g.

$$
\log _{64}\left(\frac{1}{32}\right)
$$

Example 3: Write each in logarithm form.
a. $2^{6}=64$
b. $7^{4}=2401$
c. $8^{\frac{1}{3}}=2$
d. $\quad 3^{-2}=\frac{1}{9}$

Find the inverse of:

$$
y=\log (x-2)
$$

Example 4: Graph the exponential and its inverse.
a. $y=2^{X}$

Domain:

Range:
H.A.

Graph exponential form.
Get points for that problem.
Find inverse of the exp. form.
(switch $x \& y$ and get y by inself)
Switch $x \& y$ values to get pts. for log prob.
b. $y=\log _{2} x$

Domain:

Range:

V.A.

