Logarithmic Functions as Inverses

Definition of Logarithm: If y = b^x then ______
Read as "log base b of y"

A logarithmic function is the inverse of an exponential function.

Example 1: Solve.

a. $\log_3 x = 2$ **b**. $\log_4 x = 3$

c.
$$\log_5 25 = x$$
 d. $\log_4 256 = y$

e. $\log_{9} x = \frac{3}{2}$ f. $\log_{7} \left(\frac{1}{49} \right) = y$

g.
$$\log_{\left(\frac{1}{3}\right)} 27 = y$$
 h. $\log_6 \sqrt{6} = y$

A common logarithm used ______.

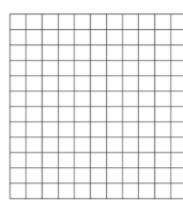
So $\log_{10} x$ = _____.

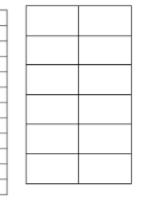
Example 2: Evaluate.

- a. log 100 b. log 6
- **c.** log 6 216 **d.** log 7 343

$$e \log_2\left(\frac{1}{128}\right) \qquad f \log_9 27$$

$$\log_{64}\left(\frac{1}{32}\right)$$

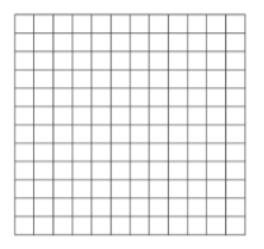

Example 3: Write each in logarithm form. <u>a.</u> $2^6 = 64$ <u>b.</u> $7^4 = 2401$


c.
$$8^{\frac{1}{3}} = 2$$
 d. $3^{-2} = \frac{1}{9}$

Find the inverse of:

Example 4: Graph the exponential and its inverse.

Domain:


Range:

H.A.

Graph exponential form.

Get points for that problem. Find inverse of the exp. form. (switch x & y and get y by inself) Switch x & y values to get pts. for log prob.

b.
$$y = \log_2 x$$

Domain:

