Math 3 Unit 3 Day 6 - Writing Polynomials Given a Graph

Zeroes are where the function equals _____ and the term 'zeroes' means the same as

Example 1: Finding the zeroes on a graph.

a) CIRCLE where the zeroes are on the graph.

Example 2: Find the zeroes of y = x(x - 8)(x + 7).

Example 3: Identfying Bounces in Graphs.

- a) Identify the zeroes in the graph.
 - x =
- b) Write the equation of the polynomial in standard form.

a) Find the zeroes of $y = (x + 2)^2$.

Example 5: Identifying Wiggles in Cubic Graphs.

a) Find the zeroes of the function.

x =

b) Write the polynomial in **intercept form** (assuming the leading coefficient is 1).

Example 6: Identifying Wiggles in Cubic Functions.

Find the zeroes of the function $y = (x + 3)^3$

The **degree of a function** tells you how many ______ or zeroes there are.

Example 6: Classify the degree of the polynomial. How many roots for the function?

a) $y = x^2$ ______ b) $y = x^3 - 3x^2 - 5$ ______ c) y = x ______ d) $y = (x - 3)^3 (x - 3)^3$ ______ e) $y = x^4 - 3x^3 - 5$ ______

