Math 3 Unit 3 Day 6 - Writing Polynomials Given a Graph

Zeroes are where the function equals \qquad and the term 'zeroes' means the same as
\qquad _.

Example 1: Finding the zeroes on a graph.

a) CIRCLE where the zeroes are on the graph.

Example 2: Find the zeroes of $y=x(x-8)(x+7)$.

Example 3: Identfying Bounces in Graphs.
a) Identify the zeroes in the graph.

$$
x=
$$

b) Write the equation of the polynomial in standard form.

Example 4: Identfying Bounces in Functions.
a) Find the zeroes of $y=(x+2)^{2}$.

Example 5: Identifying Wiggles in Cubic Graphs.
a) Find the zeroes of the function.

$$
x=
$$

b) Write the polynomial in intercept form (assuming the leading coefficient is 1).

Example 6: Identifying Wiggles in Cubic Functions.

Find the zeroes of the function $y=(x+3)^{3}$

The degree of a function tells you how many \qquad or zeroes there are.

Example 6: Classify the degree of the polynomial. How many roots for the function?
a) $y=x^{2}$
b) $y=x^{3}-3 x^{2}-5$ \qquad
\qquad
c) $y=x$
d) $y=(x-3)^{3}(x-3)^{3}$ \qquad
\qquad
e) $y=x^{4}-3 x^{3}-5$ \qquad
\qquad

Practice: Identify the zeroes of the following functions. What is the degree?

Practice: Write the polynomial in standard form given the graph.

a) Find the zeroes of $y=x(x+4)(x-3)$.
a) Find the zeroes of $y=x(x-4)^{2}$.
b) Write in standard form.
b) Write in standard form.

