Math 3 Guided Notes Unit 3 Day 8 - Dividing Polynomials

Write a polynomial in standard form given the following zeros:

1. $\{-4, 2i\}$ 2. $\{0, -\sqrt{3}\}$

3. {-3 with a multiplicity of 4}

Dividing Polynomials

1st Method: Long Division

1. Divide
$$(x^2 + 3x + 1) \div (x - 4)$$

2.
$$(r-3)\overline{)r^3-9r^2+27r-28}$$

3.
$$(x^2+3x+8) \div (x+4)$$

4.
$$(3x-2)$$
 $3x^4-5x^3+2x^2+3x-2$

When you have no remainder, we say

and _____and _____and _____and _____and _____and _____and ____and ___and ____and ___and ___and ____and ____and ____and ____and ____ann

Unit 4 Day 8 - Dividing Polynomials

Warm Up

Divide using long division.

1. $(x^3 + 7x^2 + 14x + 3) \div (x + 2)$

2. $(42x^2 - 33) \div (7x + 7)$

- 1. Go to YouTube
- 2. In search box type "Synthetic Division & Remainder Theorem"
- 3. Choose the 2nd video & watch the first **10 minutes** only

2nd Method: Synthetic Division

1. Divide $3x^3 - 4x^2 + 2x - 1$ by x + 1Setup:

NOTE: Synthetic Division only works when _____

2.
$$\frac{x^5 - 3x^2 - 20}{x - 2}$$

3. Divide
$$(r^3 - 9r^2 + 27r - 28)$$
 by $(r-3)$

4.
$$(2m^4 - 5m^3 - 10m + 8)(m - 3)^{-1}$$

Remainder Theorem: If a polynomial is divided by (x - a), then the remainder is f(a).

Use division to find f(- 4) if $f(x) = x^4 - 5x^2 + 4x + 12$.

Use division to find f(- 1) if $f(x) = 2x^4 + 6x^3 - 5x^2 - 60$.

Factor Theorem: If a polynomial is divided by (x - a) and the remainder is 0, then (x - a) is a factor of the polynomial.

Use division to determine if (x - 1) is a factor of $x^3 - x^2 + 2x - 2$.

Use division to determine if (x + 3) is a factor of $2x^3 - 4x + 5$.