Math 3 Guided Notes Unit 3 Day 8 - Dividing Polynomials

Write a polynomial in standard form given the following zeros:

1. $\{-4,2 i\}$
2. $\{0,-\sqrt{3}\}$
3. $\{-3$ with a multiplicity of 4$\}$

Dividing Polynomials

$1^{\text {st }}$ Method: Long Division

1. Divide $\left(x^{2}+3 x+1\right) \div(x-4)$
2. $(r - 3) \longdiv { r ^ { 3 } - 9 r ^ { 2 } + 2 7 r - 2 8 }$
3. $\left(x^{2}+3 x+8\right) \div(x+4)$
4. $(3 x - 2) \longdiv { 3 x ^ { 4 } - 5 x ^ { 3 } + 2 x ^ { 2 } + 3 x - 2 }$

When you have no remainder, we say
\qquad
are FACTORS of

Unit 4 Day 8 - Dividing Polynomials

Warm Up

Divide using long division.

1. $\left(x^{3}+7 x^{2}+14 x+3\right) \div(x+2)$
2. $\left(42 x^{2}-33\right) \div(7 x+7)$
3. Go to YouTube
4. In search box type "Synthetic Division \& Remainder Theorem"
5. Choose the $2^{\text {nd }}$ video $\&$ watch the first $\mathbf{1 0}$ minutes only

$2^{\text {nd }}$ Method: Synthetic Division

1. Divide $3 x^{3}-4 x^{2}+2 x-1$ by $x+1$ Setup:

NOTE: Synthetic Division only works when \qquad
2. $\frac{x^{5}-3 x^{2}-20}{x-2}$
3. Divide $\left(r^{3}-9 r^{2}+27 r-28\right)$ by $(r-3)$
4. $\left(2 m^{4}-5 m^{3}-10 m+8\right)(m-3)^{-1}$

Remainder Theorem: If a polynomial is divided by ($x-a$), then the remainder is $f(a)$. Use division to find $f(-4)$ if $f(x)=x^{4}-5 x^{2}+4 x+12$.

Use division to find $f(-1)$ if $f(x)=2 x^{4}+6 x^{3}-5 x^{2}-60$.

Factor Theorem: If a polynomial is divided by ($x-a$) and the remainder is 0 , then ($x-a$) is a factor of the polynomial.

Use division to determine if $(x-1)$ is a factor of $x^{3}-x^{2}+2 x-2$.

Use division to determine if $(x+3)$ is a factor of $2 x^{3}-4 x+5$.

