1. Simplify, write in standard form, and classify: $(2x^4 + 16x^3 + 4) - (-5x^5 + 2x^4 + 8)$

2. Find the **zeros** of $y = x(2x - 3)^2(x^2 + 4)$

3. $f(x) = x(x+3)^2(x-1)$

Zeros: _____

Standard form: _____

Classify by Degree: _____

Classify by # of term(s): _____

4. Write a statement that best describes the zeroes of the **quartic** function shown.

Factor the following for #5-6. Show ALL work.

5.
$$2x^3 + 3x^2 - 9x$$

6.
$$2x^2 - 32$$

Solve by factoring for #7-9. Show ALL work and give EXACT answers.

7.
$$x^4 - 8x^2 = 48$$

7.
$$x^4 - 8x^2 = 48$$
 8. $x^3 - 2x^2 + 9x - 18 = 0$ 9. $343a^3 - 27 = 0$

9.
$$343a^3 - 27 = 0$$

10. Factor:
$$x^2 - y^2$$

11. Determine which binomial is a factor of: $x^3 - x^2 + 4x - 12$.

a)
$$(x + 2)$$
 c) $(x - 2)$

c)
$$(x - 2)$$

b)
$$(x + 8)$$

b)
$$(x + 8)$$
 d) $(x - 8)$

12. (a) What are the zeros of the polynomial. (b) Write the equation of the polynomial in standard form.

13. Write the polynomial in standard form that has zeros of $0, \frac{2}{3}$, and 4.

14. Write the polynomial in standard form that has zeros of -2 and 3 + 2i.

Divide using synthetic or long division.

15.
$$(50x^3 + 10x^2 - 35x - 7) \div (5x - 4)$$

$$16. \frac{x^3 - 13x^2 + 40x + 18}{x - 7}$$

17. Find the EXACT roots using division.

$$3x^3 + x^2 - 4 = 0$$

How many **total** solutions?

How many **real-rational** solutions?

How many **imaginary** solutions?

18. Expand using Pascal's Triangle: $(2a - b^3)^5$

18. _____

19.Find the 6^{th} term of $(2x + 3)^8$ using Pascal's Triangle.

19. _____

- **20.** A rectangle has the dimensions of (x 2) and (-x + 10).
 - a) Write an equation to model the area in factored form of the rectangle.
 - b) At what x-value does the maximum area occur?
 - c) What is the maximum area of the box?