1. Complete the proof.

Given: 18 = 3(3x - 6)

Prove: x = 4

2. Complete the proof.

Given: 6a + 5a = -11

Prove: x = -1

1.

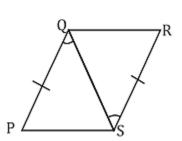
Statements	Reasons
1.	1.

Statements Reasons

1.

3-6: Can the two triangles be proven congruent? Circle YES or NO. If so, tell which postulate or theorem you used and finish the congruency statement.

3.

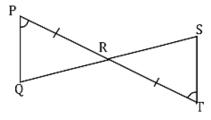


Congruent? Circle YES or NO

 $\Delta PQS \cong \Delta$

by _____

4.

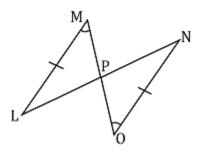


Congruent? Circle YES or NO

 $\Delta QPR \cong \Delta$

by _____

5.

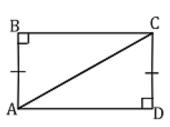


Congruent? Circle YES or NO

 $\Delta MPL \cong \Delta$ _____

by

6.

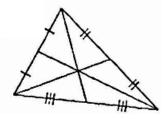


Congruent? Circle YES or NO

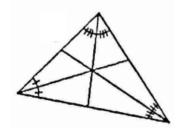
 $\Delta ABC \cong \Delta$

by _____

7-10: Match the picture with the corresponding point of concurrency.

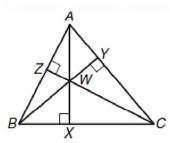


8.

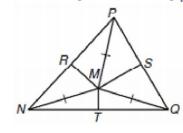


A. Centroid

B. Incenter



____ 10.

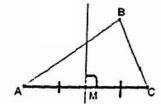


C. Circumcenter

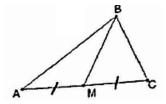
D. Orthocenter

11-14: Match the picture with the corresponding segments.

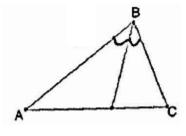
_____ 11.

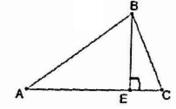


____ 12.



E. Median

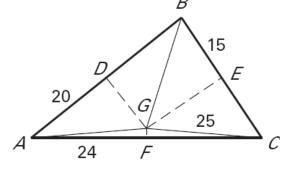




G. Perpendicular Bisector

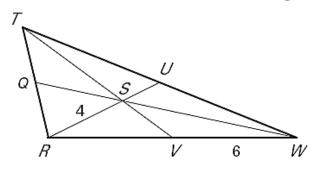
H. Altitude

In the diagram, the perpendicular bisectors (shown with dashed segments) of $\triangle ABC$ meet at point G--the circumcenter. and are shown dashed. Find the indicated measure.



19. IF BG =
$$(2x - 15)$$
, find x.

Point S is the <u>centroid</u> of $\triangle RTW$, RS = 4, VW = 6, and TV = 9. Find the length of each segment.

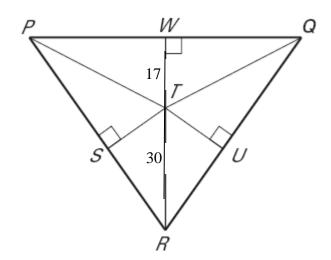


Point T is the <u>incenter</u> of $\triangle PQR$.

26. If Point T is the *incenter*, then Point T is the point of concurrency of

the ______.

28. If
$$TU = (2x - 3)$$
, find x.



29. If
$$m\angle PRT = 34^{\circ}$$
, then $m\angle QRT =$

30. If
$$m\angle RPQ = 52^{\circ}$$
, then $m\angle RPT =$